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LONG-TERM GOALS 
 
The long-term goal of this work is to examine the utility of commercial bathymetric lidar technology 
solely, and in combination with commercial passive imaging spectrometers, for measuring 
environmental information for military applications in the littoral zone. These findings will indicate 
how commercial systems might evolve to achieve improved performance for rapid environmental 
assessment, and for deployment in unmanned aerial vehicles.  
 
OBJECTIVES 
 

1. Develop new classifiers using rule-based, blob-level techniques to combine lidar and 
hyperspectral data, and compare new results to those achieved using pixel-level fusion 
algorithms developed in previous phases of the project. 

 
2. Apply a new inversion algorithm to hyperspectral data to produce seafloor reflectace data 

cubes, and analyze the data cubes to identify minimal spectral bands for seafloor classification. 
 

3. Refine the water column volume visualizer developed in earlier work, so that it may be used 
for editing and analysis of lidar data. 

 
4. Improve the REA software making it more robust and stable, and improve the user 

documentation. 
 

5. Investigate use of REA software with data produced by other sensors. 
 
APPROACH 
 
In earlier work, we developed techniques to accomplish seafloor classification from SHOALS lidar 
data alone, and by fusing SHOALS data with CASI hyperspectral data [1], [2]. These pixel-level 
fusion algorithms were implemented in the Rapid Environmental Assessment (REA) Processor, and 
that software was delivered to ONR in March of 2008.  In this phase, we develop more sophisticated 
approaches for fusion and classification by increasing the level of abstraction in both the spatial and 
information contexts of the measured data. Our approach includes the addition of a mean-shift 
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algorithm to REA for generation of spatial blobs, and the application of set theoretic techniques to find 
the intersection and union of blobs identified separately in the lidar and spectral data. We also add to 
REA the capability to produce blob-level seafloor classifications using decision rules automatically 
generated with the See5 software. These new capabilities support the analysis of the extended 
information feature space derived from both the active and passive data, with the goal of finding a 
subset of optimal features for seafloor classification. Subsequent to our earlier reported results, we 
developed a more sophisticated constrained inversion algorithm to produce spectral reflectance images 
of the seafloor [3]. In this phase of CLUBS we use those algorithms to produce improved images from 
the raw airborne data acquired in the previous phases. 
 
In addition to our efforts to improve the accuracy of seafloor classification, we extend the functionality 
of the water column volume visualizer by adding the capability to auto-detect the sea surface and 
seafloor, and develop the necessary hooks into the raw data to allow use of the volume visualizer for 
data editing.  
 
WORK COMPLETED 
 
Funding for this phase of CLUBS was awarded in February 2010. In the subsequent 7 months we 
completed the following work: 
 
We developed a blob generation procedure based on a mean-shift algorithm [4], and implemented this 
blob generator in REA.  Given any arbitraty raster spatial image stack defining a feature space, our 
mean-shift approach searches for similarity in the feature domain, and connectivity in the spatial 
domain, to segment the spatial image into labeled blobs. This blobbing procedure is an improvement 
over simple region-growing algorithms tested earlier, and is an important step towards implementing 
higher-level fusion algorithms to combine the lidar and hyperspectral data. 
 
We developed and implemented into REA a Bhattacharyya Distance (BD) classifier [5], which 
measures the distance between the data distribution of a blob, and the data distributions of ground truth 
regions of interest (ROI), and assigns the blob to the nearest ROI distribution in terms of the distance 
computed within the feature space. 
 
We integrated the automatic rule generation software, See5, into REA and refined REA to parse the 
output rules from the See5 classifier to generate rule-based classification images. 
 
Using a new spectral optimization algorithm computing a constrained inversion of the CASI data, and 
new algorithms for estimation of SHOALS backscattering, we re-processed the SHOALS and CASI  
datasets to produce improved seafloor reflectance images from the active and passive data. All new 
classification work is based on these images. 
 
We implemented algorithms to auto-detect the surface and seafloor in the water column volume 
visualizer, and implemented the ability to rapidly generate water column visualizations in arbitrarily 
drawn regions of interest. 
 
RESULTS 
 
We implemented a mean-shift blob generator into REA and are tuning its performance for improved 
sensitivity and accuracy. We are also using it to understand the information content within derived 
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feature spaces.  For example, in Figure 1 (b), we show the spatial blobs resulting from analysis of the 8 
information features generated by gray level co-occurance matrix (GLCM) analysis of the SHOALS 
seafloor reflectance image of Looe Key, Florida (Figure 1 (a)). The 8 features generated in GLCM 
analysis are: mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and 
correlation [1]. In blobbing this feature space we used L2-norm as the similarity metric. Here, our 
blobbing algorithm identified seven distinct clusters within the manifold, and labeled similar blobs 
with the same color. On inspection, we see that two different sand types are well-separated. But, due to 
subtle differences between the GLCM textures for sea grass and the linear reef in the top third of the 
image, those two types are not well-separated in the blob image. We expect this separability to 
improve with subsequent tuning of the mean shift parameters, and with selection of other information 
features derived from the lidar measurements (e.g. rugosity and waveform shape parameters). 
 
 
 

 
(a)        (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          (a)                                                                     (b) 

 
Figure 1. Grayscale Looe_Key SHOALS seafloor reflectance image (a), Blobbed image  
using all the eight features of the GLCM analysis (b). Seven different texture classes are 

 found by the mean shift clustering process. 
 
We can identify blobs in the CASI seafloor reflectance datacube using the same mean shift blobbing 
procedure, but in this case we use spectral angle mapper (SAM) as the similarity metric. In Figure 2, 
we show results using the first 12 spectral channels of CASI data (wavelengths less than 600nm), 
where the CASI seafloor reflectance images have been inverted using the Spectral Optimization 
Algorithm [3]. Here, our mean shift blobbing algorithm has identified 4 modes in the manifold 
corresponding to 4 bottom types in the spatial data. Upon comparison with Figure 1, we see a good 
separation between the linear reef and the sea grass. This success arises from the fact that the water is 
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very shallow in this dataset, and at the time of data collection it was very clear. Under these conditions, 
the spectrometer can be used to achieve accurate seafloor classification. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)      (b) 
 
 

Figure 2. RGB composite of (Red:597nm Green:537nm Blue:477nm) Looe_Key CASI  
bottom image (a), Blob image using the first twelve bands (wavelength < 600nm) as features 

 of the CASI bottom image (b) 
 
To illustrate the difference between pixel-level and blob-level classification with passive seafloor 
reflectance spectra, we apply a Bhattacharyya Distance (BD) [5] classifier to the blob image shown in 
Figure 2(b), using 7 training ROI’s belonging to four different sea floor bottom types. This procedure 
creats the blob-level classification map shown in Figure 3(a). In Figure 3(b), we show a pixel-level 
classification produced by applying a maximum likelyhood classifier (MLC) to the same initial 12 
channels of spectral data, using the same training set. The mapped classifications are sand, reef, reef 
rubble, and sea grass. On inspection, the two classifications look similar. But a formal accuracy 
assessment reveals that the blob-level classifier is better. The overall accuracy of the blob-level 
approach is 82%, whereas the accuracy of the pixel level classifier is 75%. (We show the complete 
accuracy assessments in Table 1 and Table 2). 
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(a)       (b) 

 
 

Figure 3. Classification image output from a BD classifier applied on a blobbed image  
using the first twelve bands (wavelength < 600nm) as features of the CASI bottom 

 image (b). Classification image output from a Maximum likelihood classifier(MLC) applied  
on the first twelve bands of the CASI bottom image (Sea Grass: green, Coral Reef: dark green,  

Reef Rubble: orchid, and Sand: yellow) 
 
 
 
 
 
 
 
 
 
 
 
 
 



6 

Table 1: Confusion matrix and the overall accuracy table for the classification image  
shown in Figure 3(a). 

 
Table 2: Confusion matrix and the overall accuracy table for the classification image  

shown in Figure 3 (b). 

 

Class 
Name 

Reef 1 
(Linear) 

Reef 
Rubble 

Reef 2 
(Deep) 

Sand 
1 

Sea 
Grass1 

Sea 
Grass2 

User 
Accuracy 

Reef 1 
(Linear) 1260 203 724 76 16 17 54.8% 

Reef 
Rubble 128 2739 387 1 33 58 81.86% 

Reef 2 
(Deep) 50 88 1249 11 11 8 88.1% 

Sand 
1 0 0 0 3970 0 0 100% 

Sea 
Grass 1 3 35 1 0 3123 871 77.4% 

Sea 
Grass 2 4 2 7 0 1283 1073 45.29% 

Producer 
Accuracy 87.2% 89.31% 53.7% 87.9% 69.9% 52.9% 75.0% 

Class 
Name 

Reef 1 
(Linear) 

Reef 
Rubble 

Reef 2 
(Deep) 

Sand 
1 

Sea 
Grass1 

Sea 
Grass2 

User 
Accuracy 

Reef 1 
(Linear) 1190 99 23 396 12 45 67.4% 

Reef 
Rubble 0 2540 124 0 0 9 95.0% 

Reef 2 
(Deep) 251 48 2332 103 49 14 83.3% 

Sand 
1 5 0 0 7453 4 6 99.8% 

Sea 
Grass 1 0 3 0 0 2897 399 87.8% 

Sea 
Grass 2 0 377 0 0 1527 1569 45.2% 

Producer 
Accuracy 82.3% 82.8% 94.0% 88.6% 64.5% 76.8% 81.98% 
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We believe it is possible to improve the results of fusion-based classification by intersecting spatial 
blobs from the active and passive data, and using decision-level strategies to classify the intersected 
blobs. To support this work, we integrated the See5 decision rule generator into REA. It is our intent to 
use these tools to generate a general set of decision rules applicable in a wide range of 
geomorphologies and environments. To do this, we must process a large number of datasets from 
around the globe. Unfortunately, our anticipated access to the Naval Oceanographic Office (NAVO) 
data library was not granted because of data security concerns expressed in that organization. We are in 
the process of obtaining unclassified U.S. coastal data from the U.S. Army to support this work task. 
 
In earlier phases of CLUBS, we developed a novel tool to visualize lidar data in terms of the returned 
backscatter. At present, this tool exists as a only visualization tool – not as a metric tool.  In this phase 
of CLUBS, we propose it to expand its utility for data editing.  
 
In this phase of work we developed the ability to draw Regions of Interest (ROIs) under which the 
water column is displayed. This is a significant improvement over earlier versions in that the gridding 
to voxelize the water column occurs only after an ROI is drawn by the user. We are also currently 
exploring acceleration strategies including moving the required computations onto the Graphical 
Processing Unit (GPU). 
 
 

 
(a)                                                                                  (b) 

 
 

Figure 4. Volume Visualizer showing the data cube of size ~0.6 x0.2 km2. The second,  
third and fourth quadrants show the top and lateral slices of the data cube (a) and Detected  

sea floor overlaid as a vector (b). 
 
We have also added built-in routines to detect the water surface and seafloor topography by the 
implementation of edge detectors in the three orthogonal planes defining the lidar backscatter data 
cube. To date, we have used Sobel and Laplacian of Gaussian (LOG) edge detectors with good 
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success. The user can overlay these edges as vectors in each of the three multi-planar displays. This 
functionality is available through the pull down menu of the Volume Visualizer. We show preliminary 
output of this functionality developed in the reporting period in Figure 4 (b).  
 
IMPACT/APPLICATIONS 
 
The blob-level classification procedure developed in CLUBS shows a promissing way of moving 
pixel-level fusion to blob-level fusion for lidar and hyperspectral data. We have learned that the kernel 
density estimation and mean shift algorithm generate impressively well-defined blobs with proper 
input parameters. To determine the identity of the blobbed objects, we also have to develop classifiers 
for blobs or adopt decision making algorithms, like the rule-based approach. 
 
The Bhattacharyya Distance (BD) classifier measures the distance between the data distribution 
corresponding to one blob, and distributions for ground truth ROIs. Our results indicate that higher 
accuracy is achieved following this approach as compared to pixel-level classifiers. But the BD based 
classifer still requires a training sets. We are developing methods to use automatic rule generation 
software to avoid the requirement for site specific ground truth. 
 
The faster speed of the volume visualizer makes it possible to use this 3-dimensional visualization tool 
to understand backscattering changes in water column from water surface to the seafloor. It can now 
readily be used to locate small objects in the water column, and objects or layers floating below the 
water surface.  This enables developing automatic 3 directional scanning capability to detect outliers 
and determine depths from surface and seafloor edge boundaries.  
 
All algorithms and software have been integrated into the Rapid Environmental Assessment (REA) 
Processor. 
 
TRANSITIONS 
 
We will commercialize the REA processor and promulgate its use for a wide range of benthic mapping 
applications. For the past year, the Joint Airborne Lidar Bathymetric Technical Center of Expertise 
(JALBTCX) has served as a beta test site for this software. 
 
The basic funtionality of the algorithms will be adopted into the Coastal Zone Mapping and Imaging 
Lidar (CZMIL) to be built by Optech at its offices in Kiln, Mississippi. 
 
RELATED PROJECTS 
 
Coastal Zone Mapping and Imaging Lidar (CZMIL). CZMIL is a strategic partnership between Optech 
International and the Department of Marine Science at the University of Southern Mississippi leading 
to the design and construction of a next generation bathymetric lidar to improve performance in 
shallow water, and achieve water column and seafloor characterizations. The CZMIL project will also 
establish an industry/government/academic center of expertise for bathymetric lidar. 
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